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Pictorial Representation of Model 

 
  

Brief Description of Model 
• When natural coupled (layer 1) this model functions as a voltage (pressure, speed, ect.), current (mass 

flow, torque, ect.), resistive, or power load.  
• When signal coupled (layer 2) this model functions as a signal generator that can be used for 

controlling signal dependent source models.  
• The load is time dependent time dependent, and it is characterized by a look up table in an Excel 

spread sheet.  
• The model reads values directly off the Excel spread sheet rather than from a saved data file. 
• Optionally, the model can communicate directly with VBA functions in Excel to customize the loads 

behavior.  

Model Validity Range and Limitations 
• When the model is used as a power load, the system that the model is attached to must be able to 

supply the power that the model is trying to dissipate.  If the system cannot supply the specified 
amount of power, the simulation will fail because the numerical solution will not converge.  

• This VTB model will only operate in a Microsoft Windows environment and Excel 2000 or Excel Xp 
(Excel 2002) must be installed. 

• The model cannot read from the Excel spreadsheet if the Excel application is busy (i.e. a menu is open 
or a cell is being updated and the cursor is active in the function window).  If the Excel application is 
busy and the model attempts to access it, an error will occur and force VTB to shut down. 
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List of Model Pins with Connectivity Information 

Layer 1 
Pin Designation Description 
0 Natural coupled, positive node 
1 Natural coupled, negative node 

Layer 2 
Pin Designation Description 
0 Signal node, output 
 

List of Parameters and Output Variables 
This is a complete list of all parameters of the model. All models use SI units. 
 

Parameter Name Description Default 
Value Units 

Excel workbook and 
location 

The name and location of the Excel workbook file 
containing the load profile. “C:\” none 

Worksheet Excel worksheet within the Excel workbook that the 
model reads from.  “Profile” none 

Time Position The starting column and row that the model begins 
reading time data from when the simulation begins. “A4” none 

Load Position 
The starting column and row that the model begins 
reading operating point data from when the simulation 
begins. 

“B4” none 

Enable Initialize 
Function 

If selected, the model will execute a macro in the 
workbook called “VTBtoVBA_Init” each time a 
simulation is executed.  See below about Excel security 
settings.    

False 
(unchecked) none 

Enable Step Function 

If selected, the model will execute a macro in the 
workbook called “VTBtoVBA_Step” for each discrete 
time step in the simulation.  See below about Excel 
security settings.    

False 
(unchecked) none 

Load Type 
Specifies the operating point the model will control: 
voltage, current, power, power (dual), resistance, or 
signal. 

“Power” V, A, 
W, Ω 

Time Constant 

Specifies the first order transient response time between 
different load levels.  Approximately five time constants 
elapse before the new load level is reached.  If zero the 
load switches to the steady state value in one time step. 

0 seconds 

Initial Branch When operating as a power load, the model’s numerical 10×106 Ω 



Resistance (power 
loads only) 

method uses past history values to calculate new values.  
On the first time step, the model behaves as a simple 
resistor, and this initial resistance is specified by this 
parameter.  Typically large values work well because the 
load to appear as an open circuit in the system. 

Branch Resistance 
(current and power 
(mod.) loads only). 

For current load operation, the branch resistance should 
be much, much larger than the current value.  For the 
dual power load, a small resistance values causes the 
load to draw more current, and a  high resistance causes 
the load to draw less current. 

10e6 Ω 

Stop simulation if the 
load supplies power 
(voltage and current 
loads only). 

When operating as a voltage or current load, the model is 
really just a voltage or current source.  Check this option 
to stop the simulation if the load enters the active region. 

False 
(unchecked) 

none 

 
This is a list of output variables. 
 
Variable Name Description Units 
Voltage Voltage across the model, 

natural coupled only 
volts 

Current Current through the model, 
natural coupled only 

amperes 

Power Power dissipated in the model, 
natural coupled only 

watts 

Resistance Proportionality between voltage 
and current, natural coupled only 

ohms 

Signal Output value (real number), 
signal coupled only 

none (real number) 

Target steady state load level The operating point (it the 
system can support it) that the 
model will eventually arrive at. 

volts, amperes, watts, ohms, real 
number 

Target transient load level The operating point that the 
model should converge at for 
each corresponding time step.  
At steady state the target load 
level and transient load level are 
equal. 

volts, amperes, watts, ohms, real 
number 

 

Mathematical Description of Model 

Current (Mass Flow, Torque, ect.) Load 
In current mode, the model is simply a current sink, which dissipates power rather than produces power like 
a current source.  Using the resistive companion method, the current sink, Is, is attached to a branch in 
parallel with the branches resistance, Rb, as shown in Figure 1.   



 
Figure 1.  Topology of a current sink using the resistive companion method. 
 
The user specified parameters are Ib and Rb.  The amount of current into the load is 
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To make the model behave ideally such that I0 equals Ib, make Rb very large so that IRb is very small. 

Voltage (Pressure, Speed, ect.) Load 
In voltage mode, the model is an ideal voltage source using modified nodal analysis.  The model will force 
the specified voltage across its terminals.  The voltage mode topology is shown below in Figure 2. 
 

 
Figure 2.  Topology of a voltage source using modified nodal analysis. 
The user specifies the value of the voltage source, Vb, which specifies the voltage difference between node 
voltages V0 and V1: 

10 VVVb −= . (2) 

 
Warning! 
This model should not be connected directly in parallel with other voltage source models; instead, a 
resistance should be attached between them.  Many voltage source models include a series resistance inside 
the voltage model, and when this is the case a series resistance does not need to be inserted. 
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Resistive Load 
As a resistive load, the model behaves according to Ohm’s Law. 

 
Figure 3.  Topology of a resistor. 
 
The current through the resistive load is related to the voltage across it by 
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Power Load 
In power mode, the model behaves as a non-linear resistor where the current into the model is a function of 
voltage: 
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The current into the load is inversely proportional to the voltage across the load by an amount of power that 
is specified by the user.  Because the model is non-linear, several iterative calculations may be needed by 
the VTB solver in order to get the system level solution to converge.  The Newton-Raphson iteration 
method is used to model the above relationship as 
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where n denotes the nth iteration of the solution process.  Note that as the system converges n
b

n
b VV =+1 , 

and the relationship simplifies back into (4). 
 
Initial conditions. 
On the very first iteration of the first time step n

bV  is unknown; therefore, the model behaves as a simple 
resistor.  If a relatively large value of resistance is used, which is recommended, the load will appear as an 
open circuit and dissipate an insignificant amount of power.  After the first iteration, the model functions as 
a power load. 
 
Warning! 
This version of the power load will cause the system to appear to fail when it is connected in series with a 
current source.  The current output by the current source will not equal the amount specified.  This apparent 
failure occurs because the load model forces a reverse current into the current source through the current 
sources branch resistance.  The dual power load will work when connected in series with a current load. 
 
The amount of power dissipated in the load must be greater them zero.  If a value equal to or less than zero 
is specified, the model will default to a power of 1mW. 
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Power Load (dual) 
This version of the power load uses modified nodal analysis to design the dual implementation of the 
original power load above.  The internal voltage of the voltage source is 
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where the user defined parameter P is the total power dissipated in the branch resistance and in the internal 
voltage source combined.  Using the Newton-Raphson iteration method, the relationship becomes 
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where n denotes the nth iteration of the solution process.  Note that as the system converges n
b

n
b II =+1 , and 

the relationship simplifies back into (6). 
 
Initial conditions. 
On the very first iteration of the first time step n

bV  is unknown; therefore, the model behaves as a simple 
resistor.  If a relatively large value of resistance is used, which is recommended, the load will appear as an 
open circuit and dissipate an insignificant amount of power.  After the first iteration, the model functions as 
a power load. 
 
Warning! 
This version of the power load will cause the system to not converge when connected in parallel with an 
ideal voltage source.  The failure occurs because the load and the voltage source will try and specify two 
different load levels across the same set of nodes. 

Transient Response 
There is no transient response if the time constant is zero.  Otherwise, the model’s operating load, L, is  
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The load has units of A, V, W, Ω, or equivalent.  In signal mode, the load output is just a numerical value.  
( )0tL  is the load’s value at the time when the load begins a transition to a new steady state load value 

( )ftL  . 

Example of Model Use 

Creating the Load Profile Look Up Table in Excel 
The ‘load profile’ is a look up table written in Excel that expresses the load’s operating point as a function 
of time.  An example load profile spread sheet is given in Figure 4 below.   In the example time (in 
seconds) is entered in column “A” of the Excel spreadsheet, and the corresponding load values are entered 
in column “B”.  By default, the model will read data beginning at row 4, which leaves room to give some 
information about the load profile.  The example in figure 2 below uses row 1 to identify the load profile as 
an “example input spreadsheet for the Advanced Programmable Load model.”  The third row is used for 
labeling the column headings ‘Time(s)’ and ‘Load(W).’   
 



 
 
Figure 4.  The load profile example written in Excel that is referenced many times thought this document. 

Interpreting the Load Profile Lookup Table 
Let the values in the time column be labeled Ti and the values in the load column be labeled Li.  For a given 
simulation time T such that Ta < T < Tb, the model determines the load’s operating point O to be La.  For the 
example profile in figure 2 above, if T is 2.5 seconds, which is greater than T1 with a value of 1 second and 
less than T2 with a value of  2 seconds, then the loads operating point is L1, which equals 2W.  If the 
simulation time exceeds the greatest value in the time column, Tn, then the model adjusts the simulation 
time by dividing the simulation time T by Tn, and uses the remaining time Tadj to find the load’s operating 
point, O.  For example, if T is 13.5 seconds, then Tadj is 2.5 seconds and the operating point is 2W.  If T is 
equal to Tn then the load’s operating point is Ln. 

Excel Security: Enable Macros and Access to the Visual Basic 
Project (Optional) 
By default, security on Excel is set to ‘high’ to keep Excel from executing potentially malicious macros 
that could compromise your computer.  In ‘high’ security mode, only certified macros from sources that 
you approve will be executed.  Currently, none of the macros associated with this program are certified.  If 
you want to use custom macros that can be accessed by the Advanced Programmable Load model, then the 
security mode must be set no higher than ‘medium.’  To adjust the security setting, go to 
Tools/Macro/Security and select ‘medium.’  If you are using Excel Xp, access to the Visual Basic Project 

Name of the worksheet.  By default, 
the model will read data from the 
worksheet named “Profile.”  

Functions can be used, but the model 
will only read the value in the cell, 
which in this case is 8W.

When the simulation time meets or 
exceeds the last value in the time 
column, the model cycles back through 
the table starting from the second row 
of the list, which in this case is row 5 
of the spread sheet

Name of the workbook.  Note that 
Excel files have the extension ‘xls’. 

1. The ‘power’ load cannot generate 
zero watts, but the ‘dual power’ 
load can. 

2. There cannot be a zero or negative 
resistance. 

3. The first value in the time column 
must be zero



must also be enabled: on the menu bar under Tools/Macro/Security/Trusted Sources select Trust access to 
Visual Basic Project. 

Using Custom Sub Procedures and Functions in VBA (Optional) 
Optionally, the Advanced Programmable Load can initiate VBA sub procedures and functions linked to the 
Excel spread sheet.  There are two options available: VTBtoVBA_Init and VTBtoVBA_Step.  The first 
option, VTBtoVBA_Init, is a sub procedure so it does not return a value.  The model calls it whenever a 
VTB simulation begins so that with each new simulation the spread sheet can be programmed to generate a 
new set of data.  The syntax for this function is: 
 

 
 
Figure 5.  The proper syntax for the VTBtoVBA_Init sub procedure. 
 
The second option, VTBtoVBA_Step, is a function that receives state variable parameters from the model 
and returns to the model the target steady state load level.  The syntax for this function is 

 
 
Figure 6.  The proper syntax for the VTBtoVBA_Step sub function. 
 
The event variables in the function parameter list correspond exactly to the rows in the spreadsheet look up 
table.  For example, the lookup table in Figure 4 above has 11 different events that occur at specific times 
and cause specific operating point values (Watts in this case).  The current event time (dCurrentEventTime) 
is the closest time value in the look up table that is less than or equal to the current simulation time 
(dSimTime).  The current event value (dCurrentEventValue) is the load’s operating point specified on the 
same row of the table.  The time value on the next row in the table is the next event time 
(dNextEventValue) and the operating point value is the next event value (dNextEventValue).   
 
Whenever the last event time in the table is exceeded, the model restarts the event list beginning with the 
second row in the table, which is row five in the spreadsheet given in Figure 4.  When a new cycle starts, 
the event times are offset by the amount of simulation time that has elapsed.  To make programming easier 
inside VTBtoVBA_Step function, the current event and next event parameter values are already adjusted by 
the offset before they are passed through the parameter list.  

Custom Function Tutorial: Linear Interpolation 
Open the Excel workbook LoadProfileExample.xls.  If you do not have the workbook, create Inside Excel 
go to Tools/Macro/Visual Basic Editor, the Visual Basic Editor will open.  In the project window on the 
left hand side of the Visual Basic Editor right-click the label VBAProject(“LoadProfileExample.xls”) and 
choose insert/module.  Next, copy the block of code in Figure 6 and paste it into the new blank module 

Public Sub VTBtoVBA_Init() 
 
 Add VBA code here 
 
End Sub

Function VTBtoVBA_Step ( _ 
dCurrentEventTime As Double, _ 

     dNextEventTime As Double, _ 
     dCurrentEventValue As Double, _ 
     dNextEventValue As Double, _ 
     dSimTime As Double, _ 
     dTimeStep As Double) As Double 
 
 Add VBA code here  
 
End Function 



window that opened in the previous step.  Copy the block of code in Figure 7 and paste it into the function 
over the text ‘Add VBA code here.’  Before running the VTB simulation, open the Advanced 
Programmable Load model and select (check) the option to enable the Step function. 
 

 
 
Figure 7.  This block of code can be used in the VTBtoVBA_Step function to linearly interpolate the 
operating point of the load between events. 
 
Graphical results  

Model Validation 
In below Figure 8, the Advanced Programmable Load’s load profile is identical to the profile shown in 
Figure 4 above.  According to the profile, the load should increase stepwise by 2W for every second from 0 
(1uW) to 20W.  However, the maximum power that can be delivered to the load is 12.5W, which occurs 
when the input resistance, RO, and the load resistance are equal.   Therefore, the model’s power demand 
can only be met for the first seven seconds.  After seven seconds, the power demand goes up to 14W, 
which exceeds the amount of power that can be delivered to the load by the voltage source.  Figure 9 shows 
the parameter setup for the Advanced Programmable Load model and Figure 10 shows the plot power 
dissipated in the load versus time. 

 
Figure 8.  Circuit used to demonstrate the model. 
 

Dim dSlope As Double 
dSlope = (dNextEventValue - dLastEventValue) / (dNextEventTime - 
dLastEventTime) 
VTBtoVBA_Step = dLastEventValue + _ 



 
 
Figure 9.  The model’s properties used for validating the model as a power load. 
 

 
Figure 10.  Plot of power delivered to the load versus time. 

Transient Response 
For this demonstration, the system remains identical to the system given in Figure 8, except that the time 
constant parameter is changed from 0 seconds to 0.1 seconds.  Figure 12 is a plot of the power dissipated in 
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After 7 seconds, the 
simulation fails 
because the system 
cannot supply enough 
power to the load.

Note that because the Excel workbook 
above does not have a macro named 
“GenerateNewData”, this selection is 
not possible and should be left 
unchecked. 
 



the load versus time.  It shows that the load has a first order time dependence, and that it requires 
approximately five time constants (0.5 seconds) to reach its steady state operating point.  Figure 11 shows 
the parameters used to setup the load model. 
 

 
Figure 11.  The model’s load properties for the transient response demonstration. 
 
 

 
Figure 12.  Plot of power dissipated in the load versus time that demonstrates the transient time response. 

Time constant is 0.1 seconds 
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Custom Functions Results: Linear Interpolation 
In this test, the resistance between the source and the load in the demonstration model from Figure 8 is 
reduced so that the all of the power demanded by the load can be delivered.   The load profile is identical to 
the example in Figure 4, and the VBA function is added to the Excel workbook following the procedure in 
the section Custom Function Tutorial: Linear Interpolation.  Note that at 14 seconds the operating point of 
the load is 2 W because the model has cycled back to the second row of the lookup table. 
 

 
 
Figure 13.  Model properties used when testing the custom linear interpolation function. 
 
 

Time constant is 0 seconds 

The VTBtoVBA_Step function 
is enabled 



 
Figure 14.  Output plot of power dissipated in the load versus time while using the custom linear 
interpolation function. 
 

 
 
Figure 15.  The code for implementing linear interpolation with the VTBtoVBA_Step function, which is 
located in the VBA project attached to the Excel workbook. 

Signal Generator 
In signal mode the model can be used to drive signal dependent sources.  Figure 16 below shows the 
Advanced Programmable Load driving a signal dependent voltage source.  The parameters used to setup 
the model are given in Figure 17, and the load profile is identical to the one shown in Figure 4 previously.  
Figure 18 shows the plot of voltage versus time for the signal dependent voltage source.  Note that at time 
zero, the voltage of the signal load is incorrect.  The voltage should be 1µV as specified in the load profile, 
but instead the voltage is 15.9857V.  This occurs because the solver first solves the system for all naturally 
coupled models before allowing the signal coupled models to communicate.  In general, mixed coupled 
models such as the signal dependent voltage source cannot be initialized by a signal stream. 

Function VTBtoVBA_Step ( _ 
dCurrentEventTime As Double, _ 

     dNextEventTime As Double, _ 
     dCurrentEventValue As Double, _ 
     dNextEventValue As Double, _ 
     dSimTime As Double, _ 
     dTimeStep As Double) As Double 
 
 Dim dSlope As Double 

dSlope = (dNextEventValue - dLastEventValue) / 
(dNextEventTime - dLastEventTime) 

VTBtoVBA_Step = dLastEventValue + _ dSlope * (dSimTime - 
dLastEventTime) / (dNextEventTime - LastEventTime) 
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Figure 16.  Circuit topology demonstrating the load model being used in signal mode. 
 

 
 
Figure 17.  Parameters used to setup the model as a signal generator. 
 

Switch the operation parameter to 
‘signal,’ and the load will output a 
signal stream which can be 
connected to drive signal 
dependent source models.  The 
icon changes automatically. 



 
Figure 18.  Plot of the voltage output versus time for the signal dependent voltage source. 
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