"BJT" VTB Model

Author: Lu, Liqing Date: 04/25/2002 Executable file name: BJT.vtm Version number: 1.0

Description

This model represents Bipolar Junction Transistor (BJT).

Validity Range and Limitations

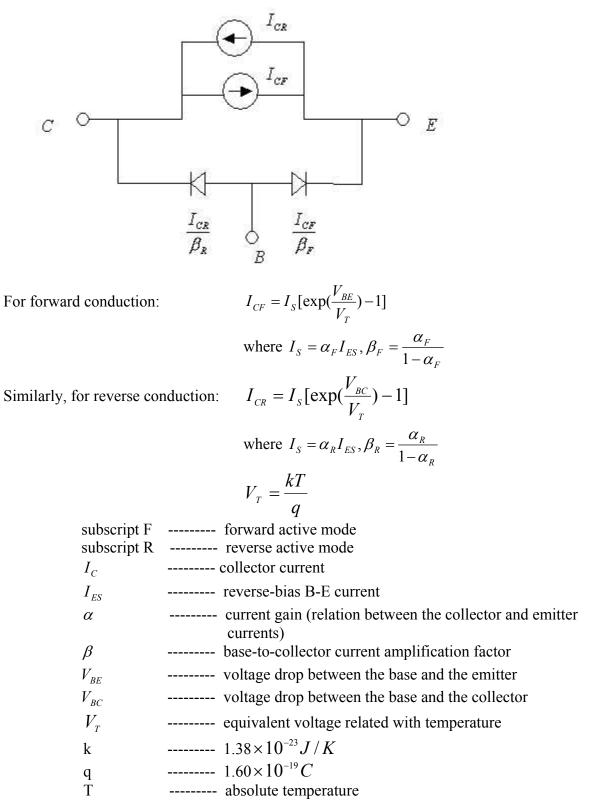
The resistive companion model for BJT is developed based on the NPN type hybrid π Ebers Moll model.

Connections

Label	Description
Terminal 0	Collector connector
Terminal 1	Base connectors
Terminal 2	Emitter connector

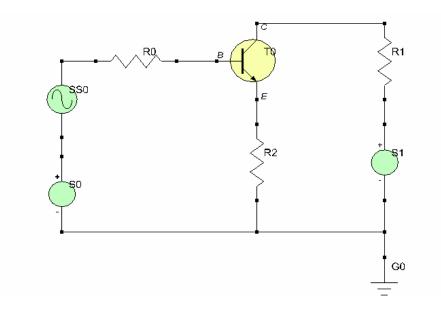
Adjustable Parameters

Name	Description	Valid Range	Default	Units
			Value	
Is	Saturation Current	>0	1.0E-11	Ampere
Т	Absolute Temperature	> 0	300.0	Kelvin
betaF $\beta_{_F}$	Normal current gain	9 ~ 999	100.0	NU
betaR β_{R}	Reverse current gain	$\beta_{\scriptscriptstyle R} << \beta_{\scriptscriptstyle F}$	10.0	NU

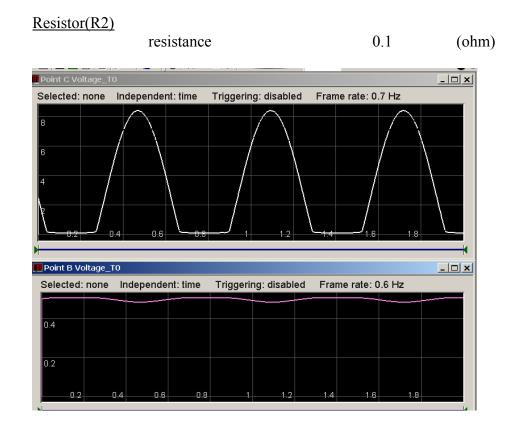

Output Variables

Name	Description	Units
Input Voltage V_{B}	Voltage at the base	Volt
Input Current I_B	Current into the base	Ampere
Output Voltage V_C	Voltage at the collector	Volt
Output Current I_c	Current at the collector	Ampere
Output Current V_E	Voltage at the emitter	Volt
Output Current I_E	Current at the emitter	Ampere

Model Assumptions

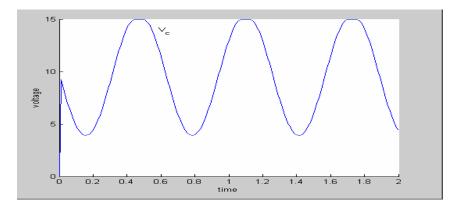

Mathematical Description

Summarized below is the mathematical description of the Ebers Moll model development.


Model Validation

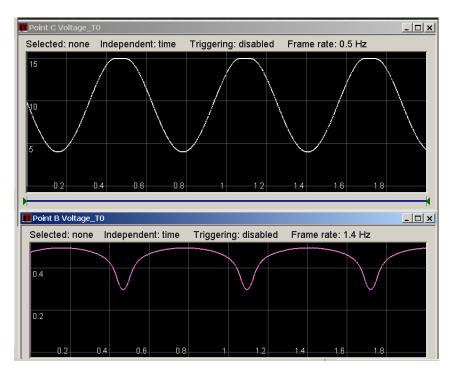
Example Application This example is to use the BJTs together with external electrical components.

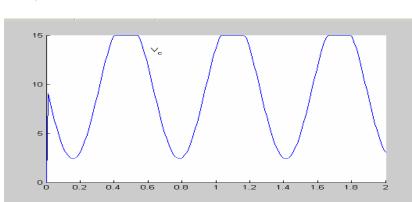
Parameter values

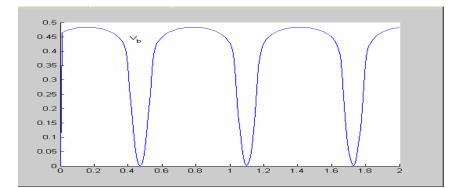

Sinusoidal Source						
	magnitude: resistance:	1.2 0.000001	(Volts) (Ohm)			
	frequency:	1.6	(Hertz)			
DC Source(SS0)	magnitude:	3.0	(Volts)			
DC Source(S1)	magnitude:	15	(Volts)			
<u>BJT</u>						
	Saturation Current:	1.0 E-11	(Ampere)			
	Absolute Temperature	300.0 100	(Kelvin)			
	Normal current gain Reverse current gain	100	(NU) (NU)			
Resistor(R0)	resistance	1.0E05	(ohm)			
Resistor(R1)	resistance	5.0E03	(ohm)			

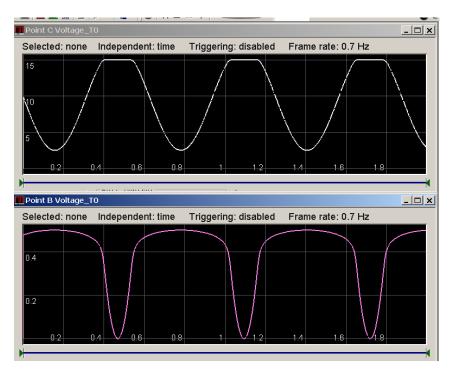
Model Verification

A MATLAB program is written to construct the same circuit as in the Testbench so as to compare the simulation results.


1) Simulation Results Comparison with Vbb=1.5v and Vbac=1.2sin(10t):


a) MATLAB similation:


b) VTB similation:


2) Simulation Results Comparison with Vbb=1.5v and Vbac=1.5sin(10t):

a) MATLAB similation:

b) VTB similation:

As seen above, the two simulations match well.

References

1. Dr. Ben G. Streetman and Sanjay Banerjee, "Solid State Electronic Devices" (5th

edition)