Multi-Phase Transmission Line VTB Model

Author: George Cokkinides
Date: November 3, 1999
Model name: MpTrLine
DLL name: MpTrLine.DLL
Version number: 1.0
Report errors or changes to: cokk@engr.sc.edu

Pictorial Representation of Model

Figure 1

Brief Description of Model

This model represents a multiphase lossy transmission line. The user selectable parameters include the conductor materials, and the size and physical arrangement of the conductors. The model is based on the equivalent series resistance and inductance matrix, and takes into account the mutual inductances among the line conductors.

Model Validity Range and Limitations

List of Model Parameters

Name	Description	Default Value	Units
Number of Conductors	may be 2,3,4, or 5	5	
Conductivity	Conductor conductivity, separately specified for each conductor	$3.5360 \mathrm{e}+007$	Mhos/m
O-Radius	Outside radius of each conductor	0.02	m
I-Radius	Inside radius of each conductor	0.0	m
X-Coordinate	x-coordinate for each conductor		m
Y-Coordinate	y-coordinate for each conductor	Pi-Equivalent	
Model Type	Pi-Equivalent or Convolution Based		
(Presently only the series impedance version of the		m	
Pi-Equivalent model is supported)			
Transposed	Not Supported	false	
Frequency Dependence	Not Supported		
Line Length	Length of line	100	1
Relative Permitivity	Effective relative permitivity of surrounding material		

List of Accessible Internal Variables

None.

Assumptions in Model Derivation

Shunt capacitance is ignored. Frequency dependence ins ignored. Line parameters are computed at 60 Hz .

Mathematical Description of Model

The model derives the line series resistance and inductance matrices based on the formulas:
$R_{m}=R_{s}=0.001588 \mathrm{f}$
$L_{m}=0.0003218 \log \left(\frac{D_{e}}{D}\right)$
$L_{s}=0.0003218 \cdot \ln \left(\frac{D_{e}}{G M R}\right)$
$D_{e}=658.368 \sqrt{\frac{\rho}{f}}$
$G M R=0.786627 \cdot r$
where:
f is the system frequency (assumed 60 Hz)
R_{m} Mutual resistance between two conduvtors
R_{S} Conductor Self Resistance
L_{m} Mutual inductance between two conductors
L_{S} Conductor self Inductance
D_{e} Equivalent depth of earth return
GMR Conductor geometric mean radius
ρ Ground plane resistivity
Using the above formulas the resistance matrix (R) and the inductance matrix (L) are constructed and a model is built based on the equation:
$V=L \frac{d}{d t} I+R I$
where:
V is a vector containing the voltage drops across each conductor.
I is a vector containing the current through each conductor.

Example of Model Use

N/A

Model Validation

Model was validated by comparing VTB results to analytic solution.

