
DiodeLevel-2

Author: Xiaobin Wang Date: 2002-07-10 Executable file name: DiodeLevel2.vtm Version number: 1.0

Description

This is a level-2 physics-based diode model. It includes the transient characteristics of diode such as forward overshoot and reverse recovery. It also contains the effects of emitter recombination and junction capacitance.

Validity Range and Limitations

The model can be widely used to model the diode used in power electronic application, conducted EMI or any other situation in which waveform is sensitive.

Connections

Terminals	Description
Terminal 0 and Terminal 1	The direction of current, and voltage is defined form terminal 0 to terminal 1.

Adjustable Parameters

Name	Description	Valid Range	Default Value	Units
BreakdownVoltage	Breakdown voltage of the device	> 0	1200.0	V
InitialTemperature	Initial Temperature of the diode	>0	300	K
BuiltInPotential	Zero-biased junction built-in	>0	0.6	V
	potential			
Junction Capacitance	Zero-biased junction capacitance	>0	1.0e-12	F
SaturationCurrent	Saturation Current of the diode	>0	1.0e-9	А
EmitterSaturation	Emitter region saturation current	>0	5.0e-22	А
LifeTime	Carrier lifetime	>0	5.0e-6	S
TransitTime	Transit time for carriers transit half		2.0e-6	S
	the distance of i-region			
InitialResistance	Initial resistance of i-region	>0	500	Ω
ContactResistance	Ohmic contact resistance	>0	1.0e-3	Ω
DampingCoefficient	Damping coefficient for NR iteration	0~1.0	0.1	N/A

Output Variables

Table 2. The following parameters are output to scope

Name	Description	Units
Voltage	Voltage across the diode	V
Current	Current through the diode	А

Model Assumptions

It is assumed that the hole and electron mobility are equal, so that the charge distribution is symmetric, and allows the analysis to be simplified to only half the structure.

Mathematical Description

The switching characteristics of the diode can be described by the charges, current components and voltages. The basic equations are:

$$i_M = \frac{q_E - q_M}{T_M} \tag{1}$$

$$\frac{q_E - q_M}{T_M} = \frac{dq_M}{dt} + \frac{q_M}{\tau}$$
(2)

$$q_E = Is \times \tau \times \left[\exp\left(\frac{v_E}{V_T}\right) - 1 \right]$$
(3)

$$iE = I_{SE} \left[\exp\left(\frac{2v_E}{V_T}\right) - 1 \right]$$
(4)

$$v_{M} = \frac{V_{T} \times T_{M} \times R_{M0} \times i}{q_{M} \times R_{M0} + V_{T} \times T_{M}}$$
(5)

$$v = 2v_E + 2v_M + Rs \times i \tag{6}$$

$$i = i_E + i_M + 2C_j \frac{dv_E}{dt}$$
⁽⁷⁾

$$C_{j} = C_{j0} \times (1 - 2v_{E} / \Phi_{b})^{-0.5}$$
 for $2v_{E} >= 0.5 \times \Phi_{b}$ (8)

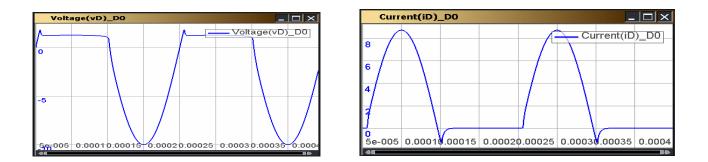
$$C_{j} = \sqrt{2} \times C_{j0} \times \frac{(2v_{E})}{\Phi_{b}} + \frac{1}{\sqrt{2}} \times C_{j0} \qquad \text{for}$$

$$2v_E < 0.5 \times \Phi_b \tag{9}$$

Where,

- i– total current through the diode
- v -- voltage across the diode
- q_E —the charges at junction boundaries
- q_M -- charges at i-region
- v_M —voltage across half of the i -region
- vE -- voltage across two junctions
- iE emitter region recombination current
- i_M—diffusion current
- T_M—transit time
- τ– carrier lifetime
- I_{S} Saturation current
- I_{SE}- emitter region saturation current
- R_{M0}—initial resistance in the i-region
- Rs-contact resistance
- V_T- thermal potential
- Cj junction capacitance
- Cj0-zero-biased junction capacitance
- Φ b– zero biased built-in potential of one junction

Model Validation


N/A

Example Application

One application example is shown in Fgure1.

The parameters for the diode model are shown in Table 3. Table3. The parameters for	Sir	₩ ₩ NVS0	
Parameter	Value	Units	
BrekDownVoltage	1200	Volt	-
InitialTemperature	300	Kelvin	
BuiltInPotential	0.6	Volt	
JunctionCapacitance	1.0e-10	Farad	with a
SaturationCurrent	1.0e-9	Ampere	urce:
EmitterSaturation	5.0e-22	Ampere	mplitude=10V;
Lifetime	5.0e-6	Second	
TransitTime	2.0e-6	Second	
InitialResistance	500	Ohm	the Diode
ContactResistance	1.0e-3	Ohm]
DampingCoefficient	0.1	N/A]

The VTB simulation results were shown in Figure 2. The transient characteristics of the diode such as forward overshoot and reverse recovery was represented in the waveforms.

Fgiure2. An example of switching waveform of the diode model

References

[1] Cliff L. Ma and P.O. Lauritzen, "A simple power diode model with forward and reverse recovery", IEEE Transactions on power electronics, Vol 8, No.4, Oct. 1993. pp342-346.